Solution to Assignment 1

1. Consider the function $\varphi(x) = x^{-a}$ where a is positive for $x \in (0,1]$ and set $\varphi(0) = 1$ so that φ is a well-defined function on [0, 1]. Show that φ is not integrable on [0, 1]. This is the simplest example of an unbounded function.

Solution. Assume on the contrary that φ is integrable on [0, 1]. Given any number $\varepsilon > 0$, there is a partition P such that

$$
|\sum_j \varphi(x_j^*) \Delta x_j - I| < \varepsilon \;,
$$

for any tags on P . (We don't care about the length of P .) Equivalently,

$$
-\varepsilon \leq \sum_j \varphi(x_j^*) \Delta x_j - I \leq \varepsilon.
$$

Taking $\varepsilon = 1$, say, we have

$$
\sum_j \varphi(x_j^*) \Delta x_j \leq 1 + I \; .
$$

We dispose all summands in the summation above except the first summand to get

$$
\frac{1}{(x_1^*)^a} \Delta x_1 = \varphi(x_1^*) \Delta x_1 \le 1 + I.
$$

The right hand of this inequality is a finite number. However, if we choose the tag x_1^* very close to 0, the left hand side could be arbitrarily large, hence this inequality cannot be true. The contradiction shows that φ is not integrable.

Note. Nonetheless, for $a \in (0,1)$ φ is improperly integrable.

2. Consider the function H in \mathbb{R}^2 defined by $H(x, y) = 1$ whenever x, y are rational numbers and equals to 0 otherwise. Show that H is not integrable in any rectangle.

Solution. Let P be any partition of the rectangle. By choosing tags points (x^*, y^*) where x^* and y^* are rational numbers,

$$
\sum_{j,k} H(x_j^*, y_k^*) \Delta x_j \Delta y_k = \sum_{j,k} \Delta x_j \Delta y_k
$$

which is equal to the area of R. On the other hand, by choosing the tags so that x^* is irrational, $H(x^*, y^*) = 0$ so that

$$
\sum_{j,k} H(x_j^*, y_k^*) \Delta x_j \Delta y_k = \sum_{j,k} 0 \times \Delta x_j \Delta y_k = 0.
$$

Depending the choice of tags, the Riemann sums are not the same for the same partition, hence they cannot tend to the same limit. We conclude that H is not integrable.

3. Let $f = f(x, y)$ be a bounded function defined in $R = [0, 1] \times [0, 1]$ which is 0 everywhere except at a point $(0, 0)$. Show that f is integrable in R with integral equal to 0.

Solution. Let M satisfy $|f(x, y)| \leq M$ for all (x, y) . Let P be any partition of R. The Riemann sum of this partition is equal to

$$
\sum_{j,k} f(x_j^*, y_k^*) \Delta x_j \Delta y_k = f(x_1^*, y_1^*) \Delta x_1 \Delta y_1.
$$

Therefore,

$$
\begin{aligned} \left| \sum_{j,k} f(x_j^*, y_k^*) \Delta x_j \Delta y_k - 0 \right| &= \left| f(x_1^*, y_1^*) \Delta x_1 \Delta y_1 \right| \\ &\leq \quad M \|P\|^2, \end{aligned}
$$

which shows that the Riemann sums tend to 0 as $||P||$'s tend to 0. We conclude that f is integrable and

$$
\iint_R f(x,y) \, dA = 0 \; .
$$

4. Let $g = g(x, y)$ be a bounded function defined in $R = [0, 1] \times [0, 1]$ which is 0 everywhere except along the line $x = 1/2$. Show that f is integrable in R with integral equal to 0.

Solution. The proof is similar to the previous one. Let P be any partition of the rectangle. Assume first that $1/2 \in (x_{j_0-1}, x_{j_0})$. (That is, 1/2 lies in the interior of some subinterval.) We let A denote the collection of subrectangles of P of the form $[x_{j_0-1}, x_{j_0}] \times [y_{k-1}, y_k]$. Then

$$
\begin{aligned}\n|\sum_{j,k} f(x_j^*, y_k^*) \Delta x_j \Delta y_k - 0| &= |\sum_{\mathcal{A}} f(x_{j_0}^*, y_k^*) \Delta x_{j_0} \Delta y_k| \\
&= |\sum_{k} f(x_{j_0}^*, y_k^*) \Delta x_{j_0} \Delta y_k| \\
&\leq M \Delta x_{j_0} \sum_{k} \Delta y_k \\
&\leq M \|P\|,\n\end{aligned}
$$

which shows that the Riemann sums tend to 0 as $||P||$'s tend to 0. The proof is similar when $1/2 = x_{j_0}$ for some j_0 . (That is, $1/2$ is the endpoint of two consecutive subintervals.)